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Abstract 

This paper discusses some of the theoretical considerations which 

arise when the guidance/navigation problem for space missions is treated 

as an application of optimal control and estimation theory. Expressions 

for the first and second variations of the trajectory end conditions are 

developed as functionals of the control variations, and necessary and 

sufficient conditions for optimality are described. The amlogy to 

similar results in the ordinary calculus is emphasized. A geometrical 

interpretstion of optimal control is presented, and the notions of 

controllability, abnormality, coaugate points, and qctremal fields are 

discussed. 2 -  The meaning of optimal control in thesresence of random 

disturbances is discussed by introducing a simple problem fromthe 

ordinary calculus. 

state vector (position and velocity) in the presence of noise on the 

navigation dsta is described. 

estimate and covariance matrix are extended to differential equations 

A technique for sequentially estimating the time varying 

The resulting difference equations for the 

for the case of continuous data by postulating a "sequentially correlated" 

stochastic process. 
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1. Navigation and Guidance for Space Missions 

Navigation is the task of determining the state vector defining the 

spacecraft trajectory, where the dtate vector mi&t be composed 

of the position and velocity components at some initial (epoch) time t 

plus certain constant parameters which define the accelerations on the 

spacecraft subsequent to time to. Guidance is the task of calculating 

and executing corrective maneuvers which will cause the mission objectives 

to be achieved, using the navigation information to predict the motion of 

the spacecraft. (reference 1) The Spacecraft trajectory can 

0' 

usual ly  be approximsted reasonably well by a series of "guidance phases," 

where the spacecraft is assumed to move under the influence of only one 

dominant gravitating body. In each such phase of flight various types 

and quality of navigation data are gathered, and various kinds of 

guidance corrections are accomplished. In figures 1, 2, and 3 the -, 
earth escape, heliocentric transfer, approach, and terminal phases of the 

trajectory are illustrated for a typical interplanetary mission. 

boost: 

The data used to solve the navigation problem might consist of a 

series of celestial observations taken from the spacecraft, such as angles 

measured between certain stars and planets,, and/or it might consist of 

earth-based radio tracking data, such as the radial speed of the space- 

craft as measured by the doppler shif't, and/or it might consist of the 

output of inertlalmeasurlng devices mounted on the spacecraft. The state 
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vector can only be estimated, since the observed data would be contaminated 

with spurious noise, and/or may not contain sufficient information. 

estimation procedure is usually designed to minimize the expected value 

of tbe squared error in the estimated, which is called minimum variance 

estimation. (reference 2) 

The 

The guidance corrections during a free fall phase of the trajectory 

would consist of one or more velocity impulses, imparted by a rocket 

engine which accelerates the spacecraft for a short period of time. 

The guidance corrections during a powered flight phase of the mission 

(while the vehicle is experiencing thrust acceleration) would consist 

of varying the direction of pointing the thrust vector, and/or of 

varying the thrust level, and/or of varying the time of terminating 

thrust. There are many ways to make corrections which will satisfy the 

mission objectives, but guidance is usually applied in such a way as to 

minimize (or maximize) some performance index. Typical would be 

minimizing the time required to accomplishthe mission, or minimizing the 

required control effort. This approach to the guidance task gives rise 

to an optimal final balue control problem pr, equivalently, a problem 

in the calculus of variations. (references 3 and 4) 

It is the purpose of this paper to discuss some of the theoretical 

considerations which arise when treating the navigation and guidance 

problem from the point of view of estimation and control theory. The 

ideas to be discussed w i l l  be illustrated by constructing simple 

examples which yield closed form solutions. 
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The notation employed is as follows: The independent variable is t, 

which may be thought of as time; T is the (fixed) final time; other 

capital letters are either matrices or kernels of 

I is the identity matrix; column vectors are denoted by a bar (-) over 

a small letter; the transpose of a vector or matrix is indicated by the 

superscript ; 6 refers to the variation of the indicated quantity 

from its -value; and q...] indicates the statistical expectation 

of the bracketed quantity. 

matrix form, for example, 

integral equations; 

S t d  hddrd 

Partial derivatives will be written in compact 

and 

The (t) will occasionally be omitted in equations. 
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2. Formulation of the Problem 

The motion of a space probe i s  i n  general described by the vector * di f fe ren t ia l  equation 

d -  - x = qz, u, t )  dt  

Si3  
where x is  the dimensional s t a t e  vector composed of the 

position (E) and velocity (G) coordinates, u i s  some control variable, 

such as the steering angle or  t h ro t t l e  set t ing of the rocket thrust  

vector, and t is  the independent variable usually taken t o  be time. 

(we shall consider here only the case of a single unbounded control variable) 

Thus equation (1) formulates the three components of the thrust  and 

gravitational acceleration (E G) and the three components of the 

velocity (= F), and fo r  any given i n i t i a l  condition tF(t,), ?(t1))) 

the t ra jectory of the space probe can be determined if u( t )  is specified. 

+For most applications equation (1) cannot be integrated i n  closed 

form and numericaldtechniques are called for, @%o i l l u s t r a t e  the ideas 

discussed here a 

d 

d 
1 

I 

integr-a tion 

A ) 

simplified special  example w i l l  be considered. 

We imagine the probe moving w i t h  constant @peed on a uni t  sphere, and 

take the  independent variable ( t )  t o  be longitude, which we assume t o  be 

always monotonically increasing. If'% is a r c  length, x2 is lati tude,  

TThe s i tuat ion where the forcing accelerations contain random 
elements will be discussed i n  Part 6. 
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control variable is the slopeu = [:2), - we have (see figure 4) 

from the earth to some other planet, where thrust acceleration is being 

continuously applied and the control variable u is related to steering 

angle of the thrust vector. The radius of the unit sphere would be the 

average radius of the earth and target planet. 

- 3. The First and Second Variations 

Perturbation theory is normally employed to formulate guidance 

and orbit determination equations, since it is usually not possible to 

find an explicit sohtion to the equations ,of motion (1) 

we postulate the existence of a known "standard", or reference, solution 

xs(t) to equation (l), and consider the variations 6ii(t) = z(t) - Gs(t) 
and 6a(t) = G(t). - cs(t) Thisyis analogous to4the ordinary calculus, 

In this approach 

. d e v d o p i f i t  a ~ I o L .  series  e x p a h s i o n  ~4 

approach 
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? . .  in destri  bin? 
where we are interested &Athe behavior of some function pi(;) in a 

w h e y e  
4 h e  partial derivatives are evaluated at = cs. If 16cl is 

* .  

sufficiently smsll, we may drop the higher order terms and consider the 

remaining second degree expression in the ui. The term 

is called the&first variation of the function pi(;) with respect to 

c, and [ 6;' [&ij64 is caUed the second variation. 
A @A 

The situation is *more complex when dealing with the functional 

&,&;hb$where 2 is n-dimensiow state vector specified by the 
differential eqwtion [l)]and tl, t2 are (fixed) initial and final times. 
Thus pi- is implicitly a 'functional of the function u(t), instead of 
a function of the vector u. i 
x at t2, that'is 

If f3 is given as a linear combination of the 

i 

* 
where = (al, a2, . . .a ) is a constant vector, we have n 

?me subscript i is introduced because later we shall deal with 
more than one function pi(jt). 



We assume 

and employ equation (1) t o  obtain a Taylor ser ies  expansion f o r  62, 

there is a standard traJectory described by x,(t), us(t) ,  . 
T h u s  

where the elements of the matrices F, G, H, Jk, and M a re  given by: 

and the partial derivatives a r e  evaluated as functions of time 

along the standard tradectory. We define the n by n s t a t e  t rans i t ion  
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matrix U(t, T) by 

u p ) ? )  = 0 
It follows that 

A 

where the "differential correctio; vector is given by 
I 

the "impulse response function" is given by 

s,(t> = q(t> W )  
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the "weighting function" is given by 

5 p  = W t )  H(t) i 

and the (symmetric) kernel is given by 

The sum of the first two terms on the right hand side of equation (7) 

is the first variation of pi, and the sum of the second two terms, 

with the factor 4 deleted, is the second variation. 
This technique can be applied to our example problem if we postulate 

the standard trajectory to be the great circle arc xzs(t) = 0, which 

results from the controlqjt) = 0. 

carried out in the appendix, where p = x1 ftl, t2; u(t)] and 

B, = x2 { tl, t2; u(t)] . 

The above described calculations are 

0 

It is shown that 
* 

+ 



where 

4. Optimal ~inal Value Control 

The control function u$t) is usually chosen to minimize (or maximize) 

some given performance index, such as the time required to accomplish the 

mission or the total control effort (cost). This becomes a problem in 

the classical calculuS of variations (reference 4) or, equivalently, optimal control 

theory, and the well known Pontryagin Principle (reference 3 ) can be 

applied. Thus if po@f$,~$pjJ4$s to be minimized, subject to 

pi(,xfA,) 4; 4Pf) 0 for i = 1, . . .r, we define the "generalized hamiltonian" 
to be 

h(s, U, t) = i'(t) F(g, ut t) 

where (see equation 8) * 
m 
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and the vi are the (constant) Lagrange multipliers. 

must be chosen so that for all 

The optimal control 

and t we have 

We shall present another approach here, which follows from an analysis 

or’ the first and second variations. 

it will be seen that necessary and sufficient conditions for optimality 

Just as in the ordinary CalculUsJ 

a re F a obtained. 
Let us consider first a simple problem in the ordinary calculus 

a h  3n d i r n e > l s i o i t h (  
where we are to chose/@ c,such that 

po = po(iiJ = min 

pi = pi(<J = o for i = 1, ... r. <+ 
.To establish the first necessary condition we define the function 

where v 

procedure), e e h o s e f i  so ~ h ~ t  a t  t h e  o p t ~ h d l  c x  we h a v e  

are the Lagrange multipliers (which must be found by a search i # 

/--I ”- - --- < a- o ” % y  
i~ App 
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, 
To establish a second necessaq, conditL* 

(rotation) matrix L such that 

we c o n s ~ n ~ t  the orthonomi 

L 

. I 

If we assume that all p i  # 0, for i = 1, .. .r, the _. ( &e &$) 
- -3 -\ --- ., 

second necessary condition becomes 

That is, R must be positive semi-definite. 
non-singular, - equation (22) also yields a sufficient 

condition. .$- If K* is singular an equation analogous to (22) can be 

With the assumption that K* is 

7- A??Phdih 3 I f  i s  ShGWz? ‘ t h a t  
@hese conclusions equiva_lent to those 

( ‘5 c Q s 5 Pd r M  py /, e,,, 
This %p 

presented in section -- 76 of reference 4,- ---- -- _-- __ . 
i?l 6 papek t o  b e  p U b L i s h e d .  
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The necessary and sufficient conditions for the continuous case are 

analogous. /I Given the r+l functionals pi(: [ tl, t2; u(t) 3 ), where @ is to 
I r e f o C n c  e 5) 

0 

be ninimized,subject to pi = 0, for ial,. . .r, and p are  linear functions of the xJ(.Zz), 
f i r.s t k 

can be shown that the necessary condition is 

Eqaation 

A =  

(23) is equivalent to the 

calculus of variations. A 

0 , 

Euler-Lagrange equation in the classical 

second necessary condition is 

which is the classical Legendre condition. It 

(14) and (15) that yo* = @:)and - so* = (g). 
the inequality sign holds strictly in equation 

can be seen from equations 

Let us suppose that 

24 (a) and, without further 
loss  of generality, that s0*(t) = 1. This is accomplished by normalizing the 

dhich can always be done impdse rcsponse functions by the factor [s,*(t)] 4 , 
if s0*w ' 0. L+Uij i=l,*.* OJ be the eigenvalues of the real symmetric 

kernel 
h 

be the corresponding eigenf'unctions, which we 

assume to be a complete in the sense of referencei?. Again we construct 

an orthonormal transformation of the B, to yield the analogue of equation 

may not be comp1ete)as is 

reference 6. This situation corresponds to 
/ ) being singular. We deal with this cage 
additional. orthonomal functions to complete 
functions are orthogonal to the kernel K*(t, 
eigenvalues equal to zero. 

.,. . 

shown on page 242 of 
the matrix K* of equation (31) 
by arbitrarily adjoining 
the set. All or' these new 
T),  and hence have 
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, 

where 

= 0) I, - - A  (27) a 
are the Fourier coefficients of the impulse response 

Let US heuristically define the delta function kernel to be A(t, 7) = cpi(t)cpi(T), 
which has the same eigcnfunctions as K*(t,T) but all eigenvalues equal to 1= i 
Unity? The analogue of equation (F) then becomes 

( 2 9 )  
~ h u s  R (t,T) can have no eigenvalues less than zero, which is equivalent 

tc saying that the kernel composed of the 1-t two terms of equation 

( 2 9 )  can have no eigenvalues less than -1. If the eigenfunctions of K*(t, T)  

do indeed form a complete set, (which implies that the inequality sign 

holds strictly in equation (Zg)), we have a sufficient condition. 

‘A rigorous construction of this delta function will not be presented 
here 



To apply these results to our example problem we suppose that arc 

length (time of flight) is to be minimized at the fixed final longitude 

Thus Bo = xl, p2 = x subject to x2(t2)= 0. and the standard trajectory t2j 2 

is given by xzs(t) = 0. In the appendix it is shown that v = 0, 

So*(t) = 1, T*(t) = 1, and the eigenvalues and eigenfunctions of K*(t, 7) 
I 

are computed. It is shown yields a minimum value 

of arc length if and only well known result. If 

/ v x  -.?j,’f;& > II the trajectory is neither maxixizing nor minimizing. 



5 .  A Geometrical Interpretation of Optimality 

Let us seek a geometrical interpretation of the optimality conditions 

by defining an (r+l) dimensional Euclidean space with Cartesian coordinates 

given by 6 B  {\,t2; u(t)J = [&Po, 6P1, ... 6Pr]. Thus any point in 

the space is a mapping of the function 6u(t) to the vector 66, and the 

origin 66 = 0 corresponds to the optimal standard trajectory. 

all points in this space cannot be reached by varying the control, for then 

it would be possible to achieve 6p0 < 0 and 6pi = 0 for i = 1, ... r, 
which contradicts the assxqtion that the standard trajectory was 

xninimizing. 

reachable points is given, to second order, by the parabaloid [See f L j  ff 5) 

, 
Obviously 

Indeed, it can be shown (reference 7) that the envelope of 

The orthonormal transformation L referred to in part 4 has the effect of 

rotating the coordinate axes of the space to coincide with the principal 



Thus the posi t ive semi-definiteness of R ( t ,  T) implies that the  reachable 

points always l i e  above the reachable envelope, which motivates the  necessary - 
and suff ic ient  conditions described above. 

envelopes are shown i n  figure 6. 
Various forms of reachable 

* 
We have thus far assumed that ( t )  = 0 but that none of the other 

0 
-E 

impulse response functions are ident ical ly  zero. 

i = 1, . . .q the  t ra jec tory  is said t o  be abnormal, of order q (reference 

4, page 210), a troublesome case where the analysis discussed above does 

not d i rec t ly  apply. 

controllabil i ty,  where a t ra jectoW can be said t o  be first order uncontrollable of 

p if there are p influence functions equal t o  zero. 

The motivation f o r  this definit ion follows from the  observation that 

a control var ia t ion 6u(t)  has no first order e f fec t  on 6(3, 

Thus any optimal tra;lectory i s  first order uncontrollable of at  l e a s t  

order one, and is  f irst  order uncontrollable of order q+l i f  it i s  abnormal of 

If 7, ( t )  = 0 f o r  

+ 
Abnormality is  related t o  the  concept of I'irst order 

order 
(references 7 and 8), 

* * 
if  Ti ( t )  = 0 ,  

order q. 

The 

a point 

control labi l i ty  definit ion can be extended by saying tha t  

B* is  second order controllable i f  -66* l i es  within the 
t 

reachable envelope. If t h i s  condition applies it is possible t o  f ind 

a' control 6'T;(t) which results i n  47' ' S F  $%; &)3 = - gp" 

7 The definit ion of abnormality presented here*is slightly 

This case corresponds t o  rotat ing 
different  kZa that  presented i n  referenceb, where (3, 

a lso  considered t o  be abnormal. 
the axes of the boundary function space (by the transformation L) 
through an w e  of precisely q'2*  

= (3, is  
f r o m  
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and hence dg* + 66" = 0. For example, the control variation 

4'= I 

can realize any desired point within the reachable envelope if 

The Yi(t) have the property that 
4 

that is, they form a set of r annihilator functions of the kernel R(t, 7 ) .  

Thus equation (31) becomes 

where 

If the desired 6p* lies within the reachable envelope we know from 

equation (31) that the right hand side of equation (33) is positive. 
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f'il i=a, . . .r Since we have assumed pi # 0, it i s  thus always possible t o  find 
c 

from equations (33) and (34) which w i l l  achieve any desired i6pi*-i=o 

within the  reachable envelope. This analysis has important application t o  

the  guidance problem, where it is  necessary t o  consider the end conditions 

, ,...r 

which can be attained f o r  any given i n i t i a l  condition disturbance, and-to 

construct a control variation which will a t t a i n  the desired result( referpa c p 9, 1 '  

n We have thus far assumed that gone of the radii of curvature of the 

reachable envelope a re  zero ( p i  # 0 

iri the  terminology of c lass ical  calculus of variations, is  equivalent 

t o  saying tha t  the i n i t i a l  point 

"conjugate" t o  one another (reference 4). 

reachable envelope cannot be constructed, which i q l i e s  that  it i s  not 

possible t o  generate a family of minimizing t ra jec tor ies  i n  a small 

zeighborhood of the standard t ra jectory which achieve slightly different 

f o r  a l l  i = 1, ... r), which, 

a r e  not 
tZ 

and the f i n a l  point 

If one or  more p 

1 t 

= 0 the 
i 

end conditions. 

of a "field" of extremals (reference 4). Let  us imagine a f m i l y  of standard 

t ra jector ies ,  a l l  extremals i n  the sense tha t  ?lo (t) = 0 along any t ra jectory 

(that is, the Mer-Iagrange equations are sa t i s f ied  along every path) 

The i n i t i a l  s t a t e  vectors 

m i f o l d ,  the f i n a l  state vectors % l i e  on some other given n-dimensional 

manifold, and the i n i t i a l  and f inal  times range over the values 0 .g t < t g T. 1 2  

This notion is  direct ly  related t o  the classical  concept 

* 

02 this family l i e  on a given n-dimensional 3s 
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For each trajectory we proceed with the analysis described above, and generate 

e family of symmetric kernels which are functions not only of- (t, T) 

- 
), that is, R = R(t, T, t ,t - - ). If 1 2’x1s,x2s 

but also of (tl,t2,Zls,x2s 

the corresponding radii of curvat&e p i (t 1’ t 2, 2 l s Y % s >  # 0 for i = L0**r ,  

it can be shown that the family of extreml trajectories is a field of 

extremls in the classical sense. p ~ = & s = = h z z z z = i ~ ~ - c - x z p - p ~  -m 
d i s c u s s e d  ( 4  t/1 p h p p _ P . ~ d  

such a field can be constructed for the example problem ‘f and only if the /p 
arc length is less than ne 
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6 .  Optimal Control in the Presence of Random Disturbances 

In the preceeding discussion of optimal control it was assumed that 

the accelerations acting on the Spacecraft are always known, while in 

fact this is usually not the case. 

of motion (1) takes the form 

Suppose, for example, that the equation 

- i? = T(2, u, t) + i(t) 
dt (35) 

where G(t) is a random vector function of time. 

random forcing functions would be unknown solar winds, and/or non-standard 

performance of the spacecraft propulsion system. 

Typical causes of such 

To deal with this case 

we must seek a meaningful way to define an optirnal control in the presence 

of random disturbances. 

Let us assume that the statistical description of g(t) is known, 

for example, suppose that g(t) = B(t) 6, where the ai are zero mean 

Gaussian random variables with known variances and correlations. The 

sample space associated with 6 is taken to be the ensemble composed 
of an infinite nurriber 

and mission objectives, but with values of ai randomly selected from 

of space missions with the same standard trajectory 
* 

the given multivariate Gaussian distribution. Any space mission would 

not actually be repeated many times, of course, but this ensemble makes 

sense if we imagine a large number of numerical simulations of the mission 
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I on a digital computer, with Monte Carlo selection of the ai. The guidance 

system performance index will be taken as the expected value (statistical 

expectation) of the quantity to be minimized in the deterministic case, 

evaluated by the computer simulation or some equivalent method. 

approach is intuitively satisfying, fol; if the system performs adequately 

for a large percentage of the cases numerically simulated, it is 

reasonable to say that it has been properly designed for a single mission. 

This 

Let us examine the task of constructing the optimal control function 
I 

'ox considering a simple problem in the ordinam calculus. 

are to minimize (in some sense) the single function p(u, a ) ,  where 
Suppose we 

u is the control variable and CY is a zero-mean Gaussian random variable 

with variance u . 
(u = us, CY = 0) to obtain 

2 We expand in Taylor's series about the point 

where the partial derivatives are evaluated at (U = us, 01 = 0). 

find the expected value of c c * - ~ - * - - < ~ )  to be 

We 
s a  



where p(a) is the (Gaussian) prabability density function for a, and 

E[ ...] indicates the statistical expectation of the quantity in brackets. 
To obtain equation (37) we have used E[ Sa] = E[6a 1 = . . = E[ 6a 3 2n+l 

] = 0, 
2 4 4 E[da 3 = a', and E[6a 1 = 30 , which are properties of the Gaussian distribution. 

Just as in the deterministic case, we seek to minimize the expected value 

of 6g by searching for a u which sets the coefficient of 6u equal to zero 

equation (37). Thus, 
S 

of 
where a l l  the (2n + 1)st - derivativesh @(u, a) contribute to the "first variation" 

with respect to u, that is, terms of the form 

appear in equation (38). 



To obtain an approximation to equation (38) we might only insist 

that [rfi (,QA)og=o, hoping that the higher derivative terms are 
negligble (an assumption which is not always justified). 

2 , / e t  

Because of the 

difficulty of dealing with all the variations with respect to allof the 

random elements of a system of the form (351, this simplified approach 

is often employed when constructing the optimal control in the ?resence 

of random disturbances. Thus we replace the random function i(t) in 

equation (35) with its (time varying) expected valce E[i(t)], and proceed 

as in the deterministic case. For those situations where this simplication 

is not justified it often becomes quite difficult to find a solution by 

classicalmethods, and the dynamic programming technique becomes an 

attractive analytical tool (reference @ , chapter /O ) l 0  
An example of 

a solution to such a problem based upon the dynamic programming point of 

view is given in reference //, 

7. Sequential Estimation of the State Vector 

In order to obtain the initial conditions for the optimal control 

equations we come to the navigation probleh, where the state vector describing 

tne trajectory must be estimated from noise contaminated tracking data. 

To simplify the discussion we shall assume that the accelerations acting 

upon the spacecraft are known, so that the A dimensional state vector 
S i x  

:,(ti) composed of the position and velocity components at any time ti 

. 
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is sufficient t o  determine the  trajectory f o r  a l l  future  t i m e  t >-ti. 

Assume that we are given a sequence of q dimensional data vectors 

.i- @(tl), $t,) ... cp( t i )  .*j related t o  the t i m e  varying s t a t e  vector, 
L 

but which are contaminated with' additive noise (measurement error).  

Comparing the given {(ti) with the values that would be observed i f  the 

traJectory were standard and the data noise were zero, we have, t o  first 

order 

and Ai i s  the partial deri rative matrix given i n  equation (39). 
where 6(ti) is a q dimensional noise vectorh (We shall henceforth use 

subscripts t o  denote times t . )  

varied traJectories defined by the Monte Carlo computer simulation discussed 

in par t  6, and w e  assume that over t h i s  ensemble we know the s t a t i s t i c a l  

Again w e  consider the ensemble of a l l  
1 

description of the random variables 62. and Ei. 

t i m e  t 

Suppose that a t  some 

we have a minimum variance estimate,of the first variation of 

1 

i 

the s t a t e  vector at  ti, denoted by 62" 

and including time ti. 

Ii% the  property that the  variance of the &mor i n  the estimate i s  a 

which i s  based upon a l l  data up t o  
/2. 

The minimum variance estimation technique (reference a) 
i '  

minimum when compared t o  the error variance obtained w i t h  any other 

iinear,unbiased estimate. 

ei = [axi 

We define the  error i n  the estimate t o  be 

- -* - Sz.3, and the error covariance matrix t o  be 
1 

96 
Ai = E[E i ' i '  ' 



Seeking a sequential (iterative) technique for treating the data, we 

advance the estimate and covariance matrix frou ti to t according to + i+l 

5 -* 
6xi+l = u (i+l, i) (41) 

where the ( A )  denotes the advanced quantity. 

estimate by incorporating the new data point at ti+l according to 

We update the advanced 

vhere 

? 

The updated covariance matrix becomes 

- 
(i+l, i> - U(ti+l, ti) 'See Part  3 for definition of U 



i+2' ti+3' a * *  
In  the  same fashion we proceed t o  observation times t 

and sequentially t r e a t  the  data vector at  each time i n  the  manner described 

above. 

tak ing?  = 0 and hl = the  a-priori.uncertainty. 

The process i s  started a t  the i n i t i a l  observation t i m e  t 

1 

by 1 
A A 

This approach t o  the 

estimation problem was developed by Kalman i n  his  analysis of l i nea r  
I 3  

dynamic systems excited by uncorrelated error sources (reference 13). 

As a simple i l l u s t r a t ion  of the method l e t  us consider the problem 

of estimating the  unknown constant 6x when given the  observations 

6rp(ti) = 6x + n(t i )  (47) 

2 2 2 and E[6ni6n 1 = 0 f o r  i # j .  Thus where E[bx 3 = ax. E[n (ti)] = an 

q i i t i o n s  (41) .- (46) become 
J 

4 * 
6xi+l = 6xi 



. i 1 .  .. 

fli 
1 where the i n i t i a l  values a re  6x = 0 and ($1)2 = (ax)2. Mote that equation 

(50) can a l so  be written as 

and equation (51) can also be writ ten as 

Eqmtion (52) is the well-known formula f o r  combining two uncorrelated 

estimates w i t h  different variances, and equation (53) i s  the well-known 

formula f o r  the result ing mriance of the conbined estirnate. 

I 

i 

! 

I 



8. Continuous Estimation of the State Vector 

I .  

As the time intervals (ti+l - ti) become small it is reasonable 
to ask if a continuous form of the estimation equations can be obtained, 
that is, we seek to replace the difference equations for the estimate 
and covariancematrh with differential equations. An analysis of the 
continuous case by Kalman (Referencen) is based upon the assumed 
existence of a differential equation describing the state vector to be 
estirited, where there is a continuous, "white noisel' random forcing 
function. In the classical analysis of continuous Markoff processes 
this would beAtke Langevin equation. h We shall take a different approach 

! 3  

aRalo~ous to (reference 13) 
f i  

here, considering the seauential estimation equations appropriate to 
stochastic process, 

?;he most 
general 4 type of where a 

A .  observationshgLen at discrete times, and 
extend the result to the continuous case without constructing a dynamic 
model of the process (reference E$). 

I 

Let us imagine a stochastic process which is composed of an 
infinite number of time records of the n-dimensional random vector 7 (t), 
that is, we have the ensemble f$4pijforo = 1, . O J .  We assume 
that the a priori first and second moments of the process are known 

to be ,FpF&0, E b(bAjq p.i)]=n ',3A-)zAA- , and EFT,$j - 
, where the statistical expectations are taken ovzr the 

the ensemble 
single (unknown) record Y 

5 
Tq"&)? On some one experiment, corresponding to a 

r \  '-, - - ,- 4, A) = f/& 
' a' 

- k  (t) , we observe a sequence of data vectors 
* '  I .  3 at the discrete times 

c f G!) - 
Me assume that the & qi are linearly related to ? k(t), that is, 

where the E. are known matrices. 
sequential estimation technique to obtain the minimum variance estimate 

In general, we cannot employ a 
1 

-.-E 
y 

contained in the data up to and including time ti cannotP\he represented 
by the n by n covariance matrixA* i' 

(t) for this correlated stochastic process, because the information 
always 

Indeed, it is shown in Reference &2 /z, 

, 
i 
I 

, 
! 
1 
i 
I 
i 
i 



. 
and 

that a necessary, A sufficient condition to be satisfied by process 
correlation matrices if the sequential estimtion approach to be 
justified is 

where 

The Pji is called the ''normalized correlation matrix'', and, 
if equation (55) applies, the process is said to be "sequentially 
correlated". Equations (41) 7 (46) then generalize to 

To show the correspondence to the application discussed in 
Part 7, we l e t  
incorporate the noise vector as part of the state vector. 
defining B = [Ai 
have equation (54). 
that is, 

5 : ~  rsz.,', xi] , that is, we 
By 

I], where I is the q by q identity matrix, we i 
Suppose the noise is exponentially correlated, 

* 

E pi @A-) m '(q7 A = [&f+ 3 (Jj-Jx2 E [ZA* zq  
n,,, 2 2; 

where D is a constant matrix. Then from the definition ofp12 it is 4 

and equations (41) - (46) follow fron (55) - :( 59). 



A sequentially correlated process has the property that the 
minimum variance estinate of a future state depends only upon the 
present estimate and1,covariance matrix, but not upon the past history 
of the process. Such a process can be thought of as a generalized, or 
"wide sense", Markoff process, which is similarly defined but in terms 
of the conditional probability of the future state. 
sequential correlation definition treats only the first two moments 
of the process, while the Markoff definition implicity deals with all 
the monents. i 
that the first and second moments conpletely specify the process, then 
the two definitions become equivalent.* This nore general approach to -,he 
seems to hold only acadenic interest for the discrete case, for, as 
pointed out above, whether we postulate a dynamic model or the sequential 
correlation condition, we come to the same result when applying the 
technique to the trajectory problem. When extending the sequential 
estimation technique to the continuous case, however, we come to 
different results from the two sets of assumptions. 

C : r r o ) -  

Thus the 

If the components of 7 are Gaussian variables, so 

estimation 
problem 

IS 
The continuous equations are obtained in Reference (&) by 

expanding the quantities appearing in equations (55) - (59) in 
Taylor's series about an arbitary point ti. 
obtain 

Letting ti+l +ti, we 

where the (time dependent) elements of equations (61) and (62) are 

* In Reference .'s; it is shown that any stationary, Gaussian Markoff process 
is sequentially correlated. 



t 

The initial conditions for equations (61) and ($2) are 
LL ' I  

Equations (61) and (62) can be numerically integrated to obtain - *  
Y (t) andh(t> 

As an illustration of the continuous estimation technique, let 
us treat the continuous version of the simple problem discussed in 

Part 7. Letting S/;x =Q,  s h d  ~ $ + f ) =  gz &) we A J p p  

2 
wherey is an unknown constant to be determined, withlvariance , 
and yz (t) is noise, with autocorrelation function given by 

a griori 
1 4% 

Thus 



’ .  . r * -1 
’ ‘Si, 

This problem is solved in closed form in Reference -’,.: It is 
estimate is r- 

2 
can be 

Equation (74) A integrated to yield 

It follows that as ct + =, we have 

It is interesting to compare equations (79) and (80) to 
limiting values of the estimate and error variance obtained 

the 
n the 

discrete case discussed in Part 7, where, for large numbers of 
measurements (n), we have 

- -  
I . :  

i (74) 

(75) 



8'- .- I . *  
I .  

-- 

- L,a -  

-1 If we decompose the interval? 1 i n to  n incrernents P ,T =/J', and 
( M /  ' 

represent equation (79) by the SUm 

Equation (80) becomes 

Thus the discrete  and continuous cases have the same l i m i t s  i f  we 

interpret  the  equivalent uncorrelated "white noise" variance i n  the 
~ ~ z ~ ~ w ~ ' ~  -' . Note t h a t  the equivalent white discrete  case t o  be 

noise variance goes t o  inf in i ty  as A t  goes t o  zero, which i s  t o  be 

expected . 
/ \ & / (  'L 



Conclusion 

We have presented here a theoretical  discussion of the guidance 

and navigation problem, treated from the  point of view of c?timal 

control and estimation theory. 

and heuristic, based upon analytical  resu l t s  recently obtained (references 

5 ,  7, 12 and 15). 

tne ideas introdwed here w i l l  be Zublished i n  the near future. 

The approach has been somewhat simplified 

A more rigorous and complete discussion of some of 

I 

i 

, 

,- 



Appendix: G ? - l i ? a l  Cor?,trol on the 

Unit a h e r e  

i F 7 i . 0  dllc&f 
In  t h i s  appendix the analysis of the e m q l e  problem, L - ~ , = n z l  i n  

?at 2 w i l l  be developed following the discussions i n  P a r t s  3 and 4. 

The equa:ions of ;lotion are given by 

' 

;n 

where u ( t )  

t ra jectory 

is 

is 

the control function. 

given by x 2 s ( t )  = 0, and: 

Assuming u ( t )  = 0, 
S 

I 
r- 

0 

O J  

standard 

I 



- .  

, 

JZ(t) = 0 

M ( t )  = 0 

It follows from equation ( A . 2 )  that  

7 

6, ax, j 

the ident i ty  f o r  t 2 7 

0 for  t < I U ( t ,  7) = 

Given @ = E !  :(t,) f o r  i = 0, 1, . r, w e  have i 1 

I 
- I  

x i ( t )  = ai U ( t Z ,  t) = (ali, a )  2i 

- 1  
g,(t)  = a ,  H ( t )  = ali 

0 I 0 -1 OJ 



b 

.'\ -yy- . "  
- 5  . .  ' '.. 

Thus w e  have 

wnere 

I 

1 t 2  +p:[[ 6u2(t) d t  T ) 6 U ( t )  6 4 7 )  d t d T  

+ higher order terms i = 0, 1, ... r (A.12) 

(t - T) for  t 2 7 

(T - T) for  T > t 
K*(t, T )  = { 

Following the  discussion or' P a r t  4, we seek t o  minimize f3 = x (t ), 0 1 2  
I - 1  subject t o  p, = x (t ) = 0. 

(13) and (.?'r.> m e  obtained. 

Tnus go 

It follows that  the Lagrange multiplier i s  

= (1, 01, al = (0, l), and equations 2 2  
t 2  I3 

v = 0, and that  us(t)  = 0 is the  staadard control. 

and eigenvalues of K ( t ,  7) by twice different ia t ing the equation 

We find the eigenfunctions 
* 

t 
f 2  

i = 1, 0 . .  a0 

(A.14) 



-. 

(~.16) 

i = 1, ... 03 

It can be shown that the  cp (t) f i zi=l, ...a 

(tl, t2). Theradius f 

do indeed form a complete 

s e t  over the  intergal  v of curvature p is  given by T- 
/ 

= tan( t2  - tl) 

The eigenvalues of the kernel R ( t ,  7) are solutions OL the  equation i 

Thus we conclude tha t  all zi 2 0 if and only if  (t2 - tl) s A. 

(~.18) 

-7 

#See bitchmarsh, "The Theory of Functions," t o  evaluate the ser ies  of 
( A - 1 7 )  
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